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Critical states in a dissipative sandpile model
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A directed dissipative sandpile model is studied in two dimensions. Numerical results indicate that the long
time steady states of this model are critical when grains are dropped only at the top, or everywhere. The critical
behavior is mean-field-like. We discuss the role of infinite avalanches of dissipative models in periodic systems
in determining the critical behavior of same models in open systems.@S1063-651X~99!50811-8#
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Spontaneous emergence of long range spatiotemporal
relations in driven dynamical systems without fine tuning
any control parameter, is the concept of self-organized c
cality ~SOC! @1–6#. Since its introduction in 1987@1#, the
precise conditions that are necessary and sufficient for S
have been subjected to intense scrutiny. The question
attracted much attention is, can one have criticality if ther
a nonzero rate of bulk dissipation? While some works at
early stages@7# suggested that indeed, the conservation
the transported quantity in the dynamical rules is a neces
the later works claimed a negative answer.

In this Rapid Communication, we study a directed dis
pative sandpile model and our numerical results indicate
it is critical. We argue that a dissipative model may be cr
cal provided the dissipation is not too strong, and conject
a criterion to determine the critical behavior.

In the sandpile model of SOC, sand grains are loca
injected and transported on an arbitrary lattice. Too ma
grains cannot be accommodated at any site. A site relax
the number of grains exceeds a certain cutoff and trans
the grains equally to the neighboring sites. This transfer p
cess is conservative, where no grain is lost or created. At
critical state, cascades of relaxations follow due to sin
injection of grains, which are called avalanches. Grai
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however, dissipate out of the system through the bound
otherwise no steady state is possible. This is called the A
lian sandpile model~ASM! @1,4#. A globally driven conser-
vative earthquake model is also similarly defined where
ergy is fed uniformly at all sites and transported@8#. This
model reproduces power laws of energy release similar to
Gutenberg-Richter law@9#.

There are some studies on the dissipative models a
Manna, Kiss, and Kertesz~MKK ! studied a sandpile mode
where a grain can dissipate during a relaxing event, i
probabilistic manner. Numerical findings show that the s
tem reaches a subcritical state with the characteristic size
the avalanches depending inversely on the probability of
sipation @10#. On the other hand, the dissipative AS
showed criticality with mean-field-like critical behavior@11#.
A one-dimensional version of this model also showed criti
behavior even with finite driving rate@12#. The Olami,
Feder, and Christensen~OFC! model @13# studied the dissi-
pative earthquake model, where dissipation is controlled b
parametera. It is claimed that the OFC model is critical fo
ac,a,ao , the conservative value ofa beingao , with the
critical behavior depending ona @13–16#. The stochastic
version of the OFC model, however, is shown to lose cr
cality for anya,ao @17#.

In a conservative model of SOC the grains move a d
tance of the order of the system sizeL when started from the
innermost region. This makes the average avalanche
R5005 © 1999 The American Physical Society
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grow as a power ofL, so that an infinite system has a pow
law distribution of the avalanche sizes. In contrast, in a d
sipative model, the grains dissipate at any distance within
system. If all grains do dissipate within certain cut-off d
tance, the average avalanche size would not have any de
dence onL in the large limit. Therefore, for a dissipativ
model to be critical, only a fractionf (L) of grains should
dissipate from the bulk and the rest through the bound
such that,f (`)5LtL→` f (L)<1. We present examples o
both cases in the following.

On an oriented square lattice with extensionL, sites are
either vacant or occupied by single grains in the stable st
The system is periodic along thex direction and they coor-
dinate increases downward. Grains are dropped randoml
toppling occurs only when the number of grainshi.1, the
site i is then vacated:hi→0. The system has a preferen
along they direction and the down-left and the down-rig
neighbors at the next row gets one grain each:hj→hj11. In
a toppling with height 2, grain number is conserve
whereas, in a toppling with height 3, one grain dissipa
from the system. Unlike the directed Abelian sandpile mo
~DASM! @18#, our model is non-Abelian since sites are v
cated in a toppling and we call it as the ‘‘directed dissipat
sandpile model’’~DDSM!.

In a parallel dynamics all toppling sites reside in a sin
row on a contiguous toppling line~TL!. It has a variable
length since the fluctuations take place only at the two en
If the TL has a lengthl at timet, it would have the length a
leastl 21 at time (t11), since all innerl 21 sites will get

FIG. 1. Configurations of DDSM on a lattice of sizeL5512. ~a!
Avalanches created by dropping grains randomly only at the
row, orderly place grains along ‘‘V’’ shaped lines.~b! Grains are
dropped randomly at all sites. Different densities in different
gions indicate the age of the big avalnches passed through
region.
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two grains each and will topple again. If either or both neig
bors of the end sites are occupied, the TL collects the gra
into it, and grows in length tol , or l 11. However, if these
neighbors are vacant, TL fills them and shrinks in leng
Therefore, the two ends of the TL move in principle like tw
annihilating random walks starting from the same point. T
avalanche terminates when they meet and annihilate e
other @18#.

Grains are randomly dropped in two ways: In caseA, they
are dropped only on the top row aty51, and in caseB, they
are dropped everywhere. Grains dissipate through the bo
ary aty5L. First, we consider caseA and a stable configu
ration is shown in Fig. 1~a!. Grains are marked by black dot
where as vacant sites are made blank. Lines of grains in
shape of ‘‘V’’ are mostly observed. This is because, due
the bulk dissipation, the density is so low that the TL mov
almost in a deterministic manner. A ‘‘V’’ is formed by the
movement of a TL through a vacant region. In this case
TL uniformly shrinks, leaving behind a trail of two converg
ing lines of occupied sites at the two ends. However, a
may also propagate in a ‘‘L ’’ between twoVs. In that case it
uniformly grows in length, deletes two sides of twoVs up to
their lowest points and then starts shrinking, producing t
converging lines which finally make a biggerV. In this way
biggerV shapes are generated at the expense of smallerVs,
which finally reaches the boundary at the bottom and di
pates. Such almost deterministic dynamics makes avalan
of rectangular shape in general, but mostly they are squa

An avalanche deletes all occupied sites through whic
passes. No dissipation occurs in the first two rows where
average density is 1/2, as in DASM@18#. It then decreases
with y as a power law:r(y);y2a. A system of sizeL
513 000 is simulated by dropping 23109 grains. We plot
r(y)y1.012 with y on a double logarithmic scale, the curve
horizontal for the largey values, givinga51.01260.030
~Fig. 2!.

Avalanche sizes is the number of sites toppled in a

p

-
at

FIG. 2. Plots of P(t)tt t21 ~circles!, r(y)ya ~squares!, and
s(y)yb ~diamonds! for system sizesL52048~closed symbols! and
13 000 ~open symbols!. Horizontal portions of the curves corre
spond tot t52.027,a51.012, andb51.184.
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avalanche. Simulation results indicate that the cumula
probability distribution of s follows a power law: P(s)
;s12ts, with ts51.5260.03. The lifetimet of an avalanche
is its vertical extension along the preferred direction and a
follows similar power law: P(t);t12t t, with t t52.027
60.030 ~Fig. 2!. The average avalanche size^s(t)& varies
with lifetime t as ^s(t)&;tgst, with gst52.0160.03. Since
s,t are two measures of the same random avalanche clu
they are necessarily dependent, and are related by the sc
relation:gst5(t t21)/(ts21).

We explain these results in the following way. It is re
sonable to assume that most of the avalanches are of re
gular shapes, which implies thatgst52. Now, if the TL has
a widthw(t8) at the intermediate timet8, then 2w(t8) grains
cross that rowy5t8. The dissipation flux per grain can b
divided into ‘‘bulk-flux’’ and ‘‘boundary-flux.’’ All grains
crossed by the TL, except at its two ends, dissipate. Th
fore, the density and the system sizeL control the share
between the bulk and the boundary fluxes. The constant
erage boundary-flux through the row aty is ^w(y)&y12t t,
which gives ^w(y)&;yt t21. But, since the average ava
lanche size of lifetimet is ^s(t)&5*0

t w(t8)dt85tt t, we get
gst5t t52 andts53/2. We numerically check the relatio
^w(y)&5ky and find a nice straight line with slopek
50.31260.001 and the correlation coefficient 0.999.

Since the density of the system decreases with increa
y, we expect that the average dissipation also should decr
with increasingy. The fraction s(y) of total number of
grains dissipated in theyth row varies ass(y);y2b, where
b51.18460.030 ~Fig. 2!. Therefore, the bulk-fluxf (L)
should vary asf (L)5 f (`)2CL2x, with x5b21. The ex-
ponentx is estimated independently by plottingf (L) versus
L2x for different x values, and the best value obtained isx
50.1760.03 andf (`)50.63460.010.

Now we consider caseB @Fig. 1~b!#. The local density
fluctuates widely since an avalanche sweeps the regio
passes and the local density in this region restarts to g

FIG. 3. Saturation of the densityr(y) and the fraction of bulk
dissipations(y) in a system of sizeL513 000.
e

o

er,
ling

an-

e-

v-

ng
se

it
w

from scratch. Since the grains are dropped everywhere
formly and the bulk dissipation depends on the density,
expect that there should be a saturation region where
average density is constant. The densityr(y) decreases from
1/2 and then saturates to a constant value 0.154360.0010
aroundyc'100. The rate of dissipations(y), initially in-
creases but finally saturates to the uniform dissipation lim
s(y)5C/L, with C51.01 ~Fig. 3!. The bulk-flux f (L) as-
ymptotically reaches tof (`)51 as 1/L.

It turned out that the system has two regions. The h
density region extends from the top toyc and the saturation
region fromyc to L. We separately collect the distributio
data for the avalanches originated in these two regions.
the high density region, thets'1.5 andt t'2.0 are obtained
as in caseA and^s(L)&;L and^t(L)&; logL are observed.
Linearity in ^w(t)&5k1t is still obeyed withk150.1 and
gst'2 is obtained again. However, for the saturation regi
plots of the distribution data showed two regions: an init
high slopets

s'2.5 for the smalls values, followed by a slope

FIG. 4. The avalanche size distribution for caseB of DDSM.
The dot-dashed curve is for the high density region. The four cur
with solid lines are for avalanches of the whole system for
system sizesL5256, 1024, 4096, and 13 000~from top to bottom!.

FIG. 5. ~a! ASM on a periodic 232 lattice, which leads to a
periodic infinite avalanche.~b! Dissipative ASM on a similar peri-
odic lattice also leads to the periodic infinite avalanche.
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ts
l '1.5 for the larges values~see Fig. 4!. We explain that

the large value ofts
s is due to those small avalanches, whi

grow on an empty region swept out by a previous large a
lanche. When this region reaches the steady state, the
lanches get the usual exponentts

l 51.5 for larges values. We
see that botĥs(L)& and ^t(L)& have constant values inde
pendent ofL. The total distribution has the behavior of th
saturated regions, since the avalanches generated in th
gion have larger weights.

We now look into the effect of the boundary on dissip
tive models in more detail. In a conservative sandpile mo
with periodic boundary condition, the total mass of the s
tem grows up indefinitely. Very soon, an ‘‘infinite ava
lanche’’ starts which never terminates. For ASM on a pe
odic square lattice, the same height configuration repea
certain interval, toppling all sites exactly once. The period
of the order ofL and is dependent on the initial configur
tion. We show such a 232 system in Fig. 5~a!. Next we
consider the dissipative ASM@11# on the same lattice. Afte
some initial dissipation, this model also creates a perio
infinite avalanche which is dissipationless@Fig. 5~b!#. We
now test our DDSM on a periodic system, by making they
direction also periodic. We observe again dissipationless
finite avalanches in both casesA andB. A TL in the form of
a ring moves indefinitely with uniform speed on the emp
torus.

An infinite avalanche has to be dissipationless after so
time, otherwise it will make the whole system empty. If
dissipative model in a periodic system has no infinite a
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lanche, it indicates that even the largest avalanche is no
big as the system. Therefore for the same dissipative mo
in the open system, the boundary should have no effec
the avalanche sizes, leading to subcritical states. We con
ture that: A dissipative model will not show self-organize
criticality if the same model on a periodic system has
infinite avalanches.

To verify this conjecture, we check some examples. T
probabilistic dissipation model@10#, the stochastic OFC@17#
model, and the dissipative two-state sandpile model@19# are
all noncritical on open boundary systems and do not h
infinite avalanches on the periodic systems. However,
random creation-dissipation model in@10#, the dissipative
ASM @11#, and the cases of DDSM as described in this p
per, lead to SOC states with open boundary and also h
periodic avalanches on the periodic systems. Finally,
check that the deterministic OFC model@13# also does not
produce any infinite avalanche on the periodic system
any a,1/4. Therefore, according to our conjecture, det
ministic OFC model is not critical, which is against the ge
eral belief. Recently, it has been claimed that the determ
istic OFC model is critical in the conservative regime on
@20#.
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