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A directed dissipative sandpile model is studied in two dimensions. Numerical results indicate that the long
time steady states of this model are critical when grains are dropped only at the top, or everywhere. The critical
behavior is mean-field-like. We discuss the role of infinite avalanches of dissipative models in periodic systems
in determining the critical behavior of same models in open systE®i€63-651X99)50811-9

PACS numbg(s): 64.60.Ht, 05.65tb, 45.70.Ht, 05.46-a

Spontaneous emergence of long range spatiotemporal cdrowever, dissipate out of the system through the boundary,
relations in driven dynamical systems without fine tuning ofotherwise no steady state is possible. This is called the Abe-
any control parameter, is the concept of self-organized critilian sandpile mode{ASM) [1,4]. A globally driven conser-
cality (SOQ [1-6]. Since its introduction in 19871], the vative earthquake model is also similarly defined where en-
precise conditions that are necessary and sufficient for SO€rgy is fed uniformly at all sites and transportg®]. This
have been subjected to intense scrutiny. The question thatodel reproduces power laws of energy release similar to the
attracted much attention is, can one have criticality if there issutenberg-Richter lay9].

a nonzero rate of bulk dissipation? While some works at the There are some studies on the dissipative models also.
early stageg7] suggested that indeed, the conservation oManna, Kiss, and KertestMKK)) studied a sandpile model

the transported quantity in the dynamical rules is a necessityyhere a grain can dissipate during a relaxing event, in a
the later works claimed a negative answer. probabilistic manner. Numerical findings show that the sys-

In this Rapid Communication, we study a directed dissi-tem reaches a subcritical state with the characteristic sizes of
pative sandpile model and our numerical results indicate thahe avalanches depending inversely on the probability of dis-
it is critical. We argue that a dissipative model may be criti-sipation [10]. On the other hand, the dissipative ASM
cal provided the dissipation is not too strong, and conjecturshowed criticality with mean-field-like critical behavift1].

a criterion to determine the critical behavior. A one-dimensional version of this model also showed critical

In the sandpile model of SOC, sand grains are locallybehavior even with finite driving rat¢12]. The Olami,
injected and transported on an arbitrary lattice. Too many-eder, and Christensé®FC) model[13] studied the dissi-
grains cannot be accommodated at any site. A site relaxes ffative earthquake model, where dissipation is controlled by a
the number of grains exceeds a certain cutoff and transfefgarameter. It is claimed that the OFC model is critical for
the grains equally to the neighboring sites. This transfer proe.<a<ea,, the conservative value ef being «,, with the
cess is conservative, where no grain is lost or created. At theritical behavior depending oa [13-16. The stochastic
critical state, cascades of relaxations follow due to singleversion of the OFC model, however, is shown to lose criti-
injection of grains, which are called avalanches. Grainsgality for any a<a, [17].

In a conservative model of SOC the grains move a dis-
tance of the order of the system sizevhen started from the
*Electronic address: manna@boson.bose.res.in innermost region. This makes the average avalanche size
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FIG. 2. Plots of P(t)t" ! (circles, p(y)y® (squares and
a(y)y” (diamonds for system sizet = 2048(closed symbolsand
13000 (open symbols Horizontal portions of the curves corre-
spond tor;=2.027, «=1.012, and3=1.184.

two grains each and will topple again. If either or both neigh-
bors of the end sites are occupied, the TL collects the grains
into it, and grows in length t&’, or 7+ 1. However, if these
Fheighbors are vacant, TL fills them and shrinks in length.
dropped randomly at all sites. Different densities in different re-The.re.for.e’ the two ends of the TL move in principle “.ke two
gions indicate the age of the big avalnches passed through thg‘tnmh""jltlng random walks starting from the Same.pplnt. The
region. avalanche terminates when they meet and annihilate each
other[18].

grow as a power ok, so that an infinite system has a power Grains are randomly dropped in two ways: In cAs¢hey
law distribution of the avalanche sizes. In contrast, in a disare dropped only on the top rowyt 1, and in cas®, they
sipative model, the grains dissipate at any distance within thare dropped everywhere. Grains dissipate through the bound-
system. If all grains do dissipate within certain cut-off dis-ary aty=L. First, we consider cas& and a stable configu-
tance, the average avalanche size would not have any depemtion is shown in Fig. (). Grains are marked by black dots,
dence onL in the large limit. Therefore, for a dissipative where as vacant sites are made blank. Lines of grains in the
model to be critical, only a fractiofi(L) of grains should shape of V"’ are mostly observed. This is because, due to
dissipate from the bulk and the rest through the boundarythe bulk dissipation, the density is so low that the TL moves
such that,f(«)=Lt__.f(L)<1. We present examples of almost in a deterministic manner. AV" is formed by the
both cases in the following. movement of a TL through a vacant region. In this case the

On an oriented square lattice with extensionsites are  TL uniformly shrinks, leaving behind a trail of two converg-
either vacant or occupied by single grains in the stable staténg lines of occupied sites at the two ends. However, a TL
The system is periodic along thedirection and they coor-  may also propagate in aA”’ between twoVs. In that case it
dinate increases downward. Grains are dropped randomly. Aniformly grows in length, deletes two sides of tWs up to
toppling occurs only when the number of graims>1, the their lowest points and then starts shrinking, producing two
site i is then vacatedh;—0. The system has a preference converging lines which finally make a bigger In this way
along they direction and the down-left and the down-right biggerV shapes are generated at the expense of smadler
neighbors at the next row gets one grain edgh>h;+1. In  which finally reaches the boundary at the bottom and dissi-
a toppling with height 2, grain number is conserved,pates. Such almost deterministic dynamics makes avalanches
whereas, in a toppling with height 3, one grain dissipate®f rectangular shape in general, but mostly they are squares.
from the system. Unlike the directed Abelian sandpile model An avalanche deletes all occupied sites through which it
(DASM) [18], our model is non-Abelian since sites are va- passes. No dissipation occurs in the first two rows where the
cated in a toppling and we call it as the “directed dissipativeaverage density is 1/2, as in DASMS]. It then decreases
sandpile model”(DDSM). with y as a power law;p(y)~y~ ¢ A system of sizelL

In a parallel dynamics all toppling sites reside in a single=13 000 is simulated by dropping>210° grains. We plot
row on a contiguous toppling lin€TL). It has a variable p(y)y*°*?with y on a double logarithmic scale, the curve is
length since the fluctuations take place only at the two endshorizontal for the largey values, givinga=1.012+0.030
If the TL has a length” at timet, it would have the length at  (Fig. 2).
least/’—1 at time ¢+ 1), since all inner”— 1 sites will get Avalanche sizes is the number of sites toppled in an

FIG. 1. Configurations of DDSM on a lattice of sikze=512. (a)
Avalanches created by dropping grains randomly only at the to
row, orderly place grains alongV™ shaped lines.(b) Grains are
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~ FIG. 3. Saturation of the densify(y) and the fraction of bulk FIG. 4. The avalanche size distribution for c&Bef DDSM.
dissipationo(y) in a system of sizé =13 000. The dot-dashed curve is for the high density region. The four curves

with solid lines are for avalanches of the whole system for the

avalanche. Simulation results indicate that the cumulativéYStem sizes =256, 1024, 4096, and 13 0@om top to bottom.
probability distribution ofs follows a power law: P(s)
~s!™7s with 7,=1.52+0.03. The lifetimet of an avalanche from scratch. Since the grains are dropped everywhere uni-
is its vertical extension along the preferred direction and alsdéormly and the bulk dissipation depends on the density, we
follows similar power law: P(t)~t1" ™, with 7,=2.027 expect that there should be a saturation region where the
+0.030 (Fig. 2). The average avalanche sizg(t)) varies average density is constant. The dengity) decreases from
with lifetime t as{s(t))~t”st, with y5=2.01+0.03. Since 1/2 and then saturates to a constant value 0.£346010
s,t are two measures of the same random avalanche clusteroundy.~100. The rate of dissipation(y), initially in-
they are necessarily dependent, and are related by the scalingeases but finally saturates to the uniform dissipation limit:
relation: yg;= (17— 1)/(7s—1). o(y)=C/L, with C=1.01 (Fig. 3. The bulk-fluxf(L) as-

We explain these results in the following way. It is rea- ymptotically reaches té(«)=1 as 1L.
sonable to assume that most of the avalanches are of rectan- It turned out that the system has two regions. The high
gular shapes, which implies thet,=2. Now, if the TL has  density region extends from the top ¥ and the saturation
awidthw(t’) at the intermediate timg, then 2v(t’) grains  region fromy, to L. We separately collect the distribution
cross that rowy=t’. The dissipation flux per grain can be data for the avalanches originated in these two regions. For
divided into “bulk-flux” and “boundary-flux.” All grains  the high density region, the;~1.5 andr,~2.0 are obtained
crossed by the TL, except at its two ends, dissipate. Thereas in caséA and(s(L))~L and(t(L))~logL are observed.
fore, the density and the system sikecontrol the share Linearity in {w(t))=kt is still obeyed withk;=0.1 and
between the bulk and the boundary fluxes. The constant aw~2 is obtained again. However, for the saturation region,
erage boundary-flux through the row watis (w(y))y* ™, plots of the distribution data showed two regions: an initial
which gives (w(y))~y™ 1. But, since the average ava- high sloperS~2.5 for the smalk values, followed by a slope
lanche size of lifetime is (s(t))=ftw(t’)dt’ =t™, we get
vst= 1= 2 and 7s=3/2. We numerically check the relation
(w(y))=ky and find a nice straight line with slopk
=0.312+0.001 and the correlation coefficient 0.999.

Since the density of the system decreases with increasin

/@ @
om de 3|3
y, we expect that the average dissipation also should decrea.3 1 311 511 115 501 15
3|3

with increasingy. The fraction o(y) of total number of
grains dissipated in thgth row varies asr(y)~y#, where
B=1.184+0.030 (Fig. 2. Therefore, the bulk-fluxf(L)
should vary ad(L)=f(«)—CL %, with x=8—1. The ex-
ponentx is estimated independently by plottifigL) versus 4|13| (0|5 |4/0| (0|4 (4|0
L~ for differentx values, and the best value obtaineckis |31 31 51 05 40 04
=0.17+0.03 andf(«)=0.634+0.010.
Now we consider cas8 [Fig. 1(b)]. The local density FIG. 5. (8) ASM on a periodic %2 lattice, which leads to a
fluctuates widely since an avalanche sweeps the region geriodic infinite avalanchgb) Dissipative ASM on a similar peri-
passes and the local density in this region restarts to growdic lattice also leads to the periodic infinite avalanche.

(b)
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T'sm1.5 for the larges values(see Fig. 4 We explain that lanche, it indicates that even the largest avalanche is not as
the large value of is due to those small avalanches, which P9 @S the system. Therefore for the same dissipative model
grow on an empty region swept out by a previous large avall the open sysFem, the t?oundary sh_quld have no effect_on
lanche. When this region reaches the steady state, the a/#e avalanche sizes, leading to subcritical states. We conjec-
lanches get the usual expone{gt 1.5 for larges values. We tu.r(.a th_at: .A dissipative model will not ;hqw self-organized
see that botis(L)) and(t(L)) have constant values inde- _cr|_t|gal|ty if the same model on a periodic system has no
pendent ofL. The total distribution has the behavior of the infinite avalanches.
saturated regions, since the avalanches generated in this re-T0 Verify this conjecture, we check some examples. The
gion have larger weights. probabilistic dissipation mod¢L0], the stochastic OF(L7]

We now look into the effect of the boundary on dissipa-model, and the dissipative two-state sandpile m¢#i@] are
tive models in more detail. In a conservative sandpile mode&ll noncritical on open boundary systems and do not have
with periodic boundary condition, the total mass of the sys-nfinite avalanches on the periodic systems. However, the
tem grows up indefinitely. Very soon, an “infinite ava- random creation-dissipation model ji0], the dissipative
lanche” starts which never terminates. For ASM on a peri-ASM [11], and the cases of DDSM as described in this pa-
odic square lattice, the same height configuration repeats @kr, lead to SOC states with open boundary and also have
certain interval, toppling all sites exactly once. The period isperiodic avalanches on the periodic systems. Finally, we
of the order ofL and is dependent on the initial configura- check that the deterministic OFC modé3] also does not
tion. We show such a 22 system in Fig. ). Next we  produce any infinite avalanche on the periodic system for
consider the dissipative ASIL1] on the same lattice. After any a<1/4. Therefore, according to our conjecture, deter-
some initial dissipation, this model also creates a periodigyinistic OFC model is not critical, which is against the gen-
infinite avalanche which is dissipationlefsig. 5b)]. We  gra) pelief. Recently, it has been claimed that the determin-

now test our DDSM on a periodic system, by making yhe isiic OFC model is critical in the conservative regime only
direction also periodic. We observe again dissipationless iNF20].

finite avalanches in both casésandB. A TL in the form of

a ring moves indefinitely with uniform speed on the empty We acknowledge D. Dhar with thanks for the critical

torus. reading of the manuscript and for many useful comments.
An infinite avalanche has to be dissipationless after som&.S.M. thanks S. Krishnamurthy, S. Roux, and S. Zapperi for

time, otherwise it will make the whole system empty. If a useful discussions. R.C. aknowledges financial support under

dissipative model in a periodic system has no infinite avathe European network project FMRXCT980183.
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